Copied to
clipboard

G = C24.443C23order 128 = 27

283rd non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.443C23, C23.665C24, C22.3312- (1+4), C22.4382+ (1+4), C428C463C2, C23.193(C4○D4), (C22×C4).584C23, (C23×C4).170C22, (C2×C42).697C22, C23.8Q8.60C2, C23.Q8.35C2, C23.34D4.33C2, C23.11D4.48C2, C23.84C2313C2, C2.92(C22.32C24), C24.C22.67C2, C23.83C23107C2, C23.65C23143C2, C23.81C23117C2, C23.63C23172C2, C2.C42.369C22, C2.39(C22.57C24), C2.92(C22.33C24), C2.106(C22.36C24), C2.101(C22.47C24), C2.103(C22.46C24), (C2×C4).459(C4○D4), (C2×C4⋊C4).475C22, C22.526(C2×C4○D4), (C2×C22⋊C4).71C22, SmallGroup(128,1497)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.443C23
C1C2C22C23C24C23×C4C23.8Q8 — C24.443C23
C1C23 — C24.443C23
C1C23 — C24.443C23
C1C23 — C24.443C23

Subgroups: 372 in 196 conjugacy classes, 88 normal (82 characteristic)
C1, C2 [×7], C2 [×2], C4 [×16], C22 [×7], C22 [×10], C2×C4 [×4], C2×C4 [×44], C23, C23 [×2], C23 [×6], C42 [×3], C22⋊C4 [×10], C4⋊C4 [×13], C22×C4 [×14], C22×C4 [×4], C24, C2.C42 [×16], C2×C42 [×2], C2×C22⋊C4 [×6], C2×C4⋊C4 [×10], C23×C4, C23.34D4, C428C4, C23.8Q8 [×2], C23.63C23 [×2], C24.C22 [×2], C23.65C23, C23.Q8, C23.11D4, C23.81C23 [×2], C23.83C23, C23.84C23, C24.443C23

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], C4○D4 [×6], C24, C2×C4○D4 [×3], 2+ (1+4) [×2], 2- (1+4) [×2], C22.32C24, C22.33C24, C22.36C24, C22.46C24 [×2], C22.47C24, C22.57C24, C24.443C23

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=g2=cb=bc, faf-1=ab=ba, ac=ca, ad=da, eae-1=abc, ag=ga, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >

Smallest permutation representation
On 64 points
Generators in S64
(2 24)(4 22)(5 36)(6 39)(7 34)(8 37)(10 50)(12 52)(14 54)(16 56)(17 45)(18 30)(19 47)(20 32)(26 42)(28 44)(29 57)(31 59)(33 63)(35 61)(38 62)(40 64)(46 58)(48 60)
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 31 23 47)(2 60 24 20)(3 29 21 45)(4 58 22 18)(5 42 62 26)(6 15 63 55)(7 44 64 28)(8 13 61 53)(9 57 49 17)(10 30 50 46)(11 59 51 19)(12 32 52 48)(14 36 54 38)(16 34 56 40)(25 37 41 35)(27 39 43 33)
(1 27 23 43)(2 16 24 56)(3 25 21 41)(4 14 22 54)(5 32 62 48)(6 17 63 57)(7 30 64 46)(8 19 61 59)(9 53 49 13)(10 42 50 26)(11 55 51 15)(12 44 52 28)(18 40 58 34)(20 38 60 36)(29 39 45 33)(31 37 47 35)

G:=sub<Sym(64)| (2,24)(4,22)(5,36)(6,39)(7,34)(8,37)(10,50)(12,52)(14,54)(16,56)(17,45)(18,30)(19,47)(20,32)(26,42)(28,44)(29,57)(31,59)(33,63)(35,61)(38,62)(40,64)(46,58)(48,60), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,23,47)(2,60,24,20)(3,29,21,45)(4,58,22,18)(5,42,62,26)(6,15,63,55)(7,44,64,28)(8,13,61,53)(9,57,49,17)(10,30,50,46)(11,59,51,19)(12,32,52,48)(14,36,54,38)(16,34,56,40)(25,37,41,35)(27,39,43,33), (1,27,23,43)(2,16,24,56)(3,25,21,41)(4,14,22,54)(5,32,62,48)(6,17,63,57)(7,30,64,46)(8,19,61,59)(9,53,49,13)(10,42,50,26)(11,55,51,15)(12,44,52,28)(18,40,58,34)(20,38,60,36)(29,39,45,33)(31,37,47,35)>;

G:=Group( (2,24)(4,22)(5,36)(6,39)(7,34)(8,37)(10,50)(12,52)(14,54)(16,56)(17,45)(18,30)(19,47)(20,32)(26,42)(28,44)(29,57)(31,59)(33,63)(35,61)(38,62)(40,64)(46,58)(48,60), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,23,47)(2,60,24,20)(3,29,21,45)(4,58,22,18)(5,42,62,26)(6,15,63,55)(7,44,64,28)(8,13,61,53)(9,57,49,17)(10,30,50,46)(11,59,51,19)(12,32,52,48)(14,36,54,38)(16,34,56,40)(25,37,41,35)(27,39,43,33), (1,27,23,43)(2,16,24,56)(3,25,21,41)(4,14,22,54)(5,32,62,48)(6,17,63,57)(7,30,64,46)(8,19,61,59)(9,53,49,13)(10,42,50,26)(11,55,51,15)(12,44,52,28)(18,40,58,34)(20,38,60,36)(29,39,45,33)(31,37,47,35) );

G=PermutationGroup([(2,24),(4,22),(5,36),(6,39),(7,34),(8,37),(10,50),(12,52),(14,54),(16,56),(17,45),(18,30),(19,47),(20,32),(26,42),(28,44),(29,57),(31,59),(33,63),(35,61),(38,62),(40,64),(46,58),(48,60)], [(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,31,23,47),(2,60,24,20),(3,29,21,45),(4,58,22,18),(5,42,62,26),(6,15,63,55),(7,44,64,28),(8,13,61,53),(9,57,49,17),(10,30,50,46),(11,59,51,19),(12,32,52,48),(14,36,54,38),(16,34,56,40),(25,37,41,35),(27,39,43,33)], [(1,27,23,43),(2,16,24,56),(3,25,21,41),(4,14,22,54),(5,32,62,48),(6,17,63,57),(7,30,64,46),(8,19,61,59),(9,53,49,13),(10,42,50,26),(11,55,51,15),(12,44,52,28),(18,40,58,34),(20,38,60,36),(29,39,45,33),(31,37,47,35)])

Matrix representation G ⊆ GL6(𝔽5)

100000
010000
001000
001400
000010
000004
,
100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
300000
030000
004200
000100
000001
000010
,
400000
010000
001300
001400
000020
000002
,
010000
100000
002000
000200
000030
000002

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,3,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,2] >;

32 conjugacy classes

class 1 2A···2G2H2I4A···4P4Q···4V
order12···2224···44···4
size11···1444···48···8

32 irreducible representations

dim1111111111112244
type+++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ (1+4)2- (1+4)
kernelC24.443C23C23.34D4C428C4C23.8Q8C23.63C23C24.C22C23.65C23C23.Q8C23.11D4C23.81C23C23.83C23C23.84C23C2×C4C23C22C22
# reps1112221112118422

In GAP, Magma, Sage, TeX

C_2^4._{443}C_2^3
% in TeX

G:=Group("C2^4.443C2^3");
// GroupNames label

G:=SmallGroup(128,1497);
// by ID

G=gap.SmallGroup(128,1497);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,344,758,723,268,1571,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=g^2=c*b=b*c,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,a*g=g*a,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽